Sensing of Crop Nitrogen Status: Opportunities, Tools, Limitations, and Supporting Information Requirements.

Citation

Tremblay, N., Fallon, E., and Ziadi, N. (2011). "Sensing of Crop Nitrogen Status: Opportunities, Tools, Limitations, and Supporting Information Requirements.", HortTechnology, 21(3), pp. 274-281.

Abstract

Diagnosing nitrogen (N) sufficiency in crops is used to help insure more effective management of N fertilizer application, and several indicators have been proposed to this end. The N nutrition index (NNI) offers a reliable measurement, but it is relatively difficult to determine. This index is based on the relationship between plant tissue N concentration and the biomass of the plant's aerial parts. However, a good estimate of the NNI should be obtained by nondestructive methods that can be carried out quickly. Although dependent on sites, chlorophyll meter (CM) measurements have been correlated with the NNI in corn (Zea mays). Since chlorophyll can be estimated through remote sensing, the possibility of quickly obtaining measurements for large surface areas points to practical applications for precision agriculture. When combined with the mapping of soil properties such as apparent electrical conductivity (EC), elevation and slope, such chlorophyll measurements make it possible to derive N fertilization recommendations by taking into account natural variations in the soil. Recently, an instrument called the Dualex (FORCE-A, Orsay, France) is marketed, which uses measurement methods based on the fluorescent properties of plant tissues. It is similar to the CM in terms of its operating principle but it measures polyphenolics (Phen), compounds that accumulate in the epidermis of leaves under N stress. Epidermal transmittance to ultraviolet light is assessed by the fluorescence excitation ratio F(ultraviolet)/F(REF), where F(ultraviolet) is the fluorescence excitation detected following ultraviolet excitation, and F(REF) is the fluorescence detected on excitation at a reference wavelength, not absorbed by the epidermis. Although the Dualex generally did not identify more differences among treatments than the CM in our studies on wheat (Triticum aestivum), corn, and broccoli (Brassica oleracea ssp. italica), combining the two measurements in a chlorophyll/Phen ratio improved the relationships with crop N nutrition status appreciably. This ratio can also be estimated by remote sensing techniques. The NNI on its own does not constitute an economically optimal recommendation for N fertilizer [economically optimal N rate (EONR)]. The EONR is the N rate at which profit is greatest. Work is currently being done to use overfertilized reference plots for this purpose and to permit an improved correlation between the indicator (NNI or chlorophyll) and EONR.

Publication date

2011-12-31

Author profiles