Effect of ammonia fiber expansion-treated wheat straw and a recombinant fibrolytic enzyme on rumen microbiota and fermentation parameters, total tract digestibility, and performance of lambs

Citation

Ribeiro, G.O., Gruninger, R.J., Jones, D.R., Beauchemin, K.A., Yang, W.Z., Wang, Y., Abbott, D.W., Tsang, A., McAllister, T.A. (2020). Effect of ammonia fiber expansion-treated wheat straw and a recombinant fibrolytic enzyme on rumen microbiota and fermentation parameters, total tract digestibility, and performance of lambs. Journal of Animal Science, [online] 98(5), http://dx.doi.org/10.1093/jas/skaa116

Plain language summary

The objective of this study was to evaluate the effect of ammonia fiber expansion (AFEX)-treated wheat straw pellets and a recombinant fibrolytic enzyme on the rumen microbiome, rumen fermentation parameters, total tract diet digestibility, and performance of lambs. Compared with control diet, diets containing AFEX straw promoted greater feed intake and improved average daily gain in lambs up to 42 d on feed but not when the entire experimental period is considered. AFEX feed treatment and enzyme addition resulted in small changes in the rumen microbial community. This study shows that AFEX-treated wheat straw can replace alfalfa hay with no loss in lamb growth performance. Additionally, the feed enzymes can alter the rumen microbiome and improve gain to feed but that these effects are primarily found in the initial feeding periods. Further work is required to identify the optimal growth period in which feed pre-treatments should be included in the diet.

Abstract

The objective of this study was to evaluate the effect of ammonia fiber expansion (AFEX)-treated wheat straw pellets and a recombinant fibrolytic enzyme on the rumen microbiome, rumen fermentation parameters, total tract diet digestibility, and performance of lambs. Eight rumen cannulated wethers and 60 lambs (n = 15 per diet, 8 rams and 7 ewes) were used in a replicated 4 × 4 Latin square design digestibility study and a complete randomized growth performance study, respectively. Four treatment diets were arranged in a 2 × 2 factorial structure with AFEX wheat straw (0% or 30% AFEX straw pellets on a dietary DM basis replacing alfalfa hay pellets) and fibrolytic enzyme (with or without XYL10C, a β-1,4-xylanase, from Aspergillus Niger) as main factors. Enzyme was applied at 100 mg/kg of diet DM, 22 h before feeding. Rumen bacteria diversity Pielou evenness decreased (P = 0.05) with AFEX compared with the control diet and increased (P < 0.01) with enzyme. Enzyme increased (P ≤ 0.02) the relative abundancies of Prevotellaceae UCG-004, Christensenellaceae R-7 group, Saccharofermentans, and uncultured Kiritimatiellaeota. Total protozoa counts were greater (P ≤ 0.04) in the rumen of lambs fed AFEX compared with control, with enzyme reducing (P ≤ 0.05) protozoa counts for both diets. Digestibility of DM did not differ (P > 0.10) among diets, but digestibility of CP was reduced (P = 0.001), and digestibility of NDF and ADF increased (P < 0.05) as AFEX replaced alfalfa. Compared with control, AFEX promoted greater DMI (P = 0.003) and improved ADG up to 42 d on feed (P = 0.03), but not (P = 0.51) over the full ~94-d experiment. Consequently, overall G:F was reduced (P = 0.04) for AFEX when compared with control (0.188 vs. 0.199), but days on feed were lower (P = 0.04) for AFEX (97 vs. 91 d). Enzyme improved DMI of AFEX up to day 70 (P = 0.01), but did not affect DMI of the control diet. Enzyme addition improved ADG of lambs fed both diets in the first 28 d (P = 0.02), but not over the entire feeding period (P ≥ 10). As a result, G:F was improved with enzyme for the first 28 d (P = 0.04), but not overall (P = 0.45). This study shows that AFEX-treated wheat straw can replace alfalfa hay with no loss in lamb growth performance. Additionally, the enzyme XYL10C altered the rumen microbiome and improved G:F in the first month of the feeding.