Comparison of Four C18 Columns for the Liquid Chromatographic Determination of Deoxynivalenol in Naturally Contaminated Wheat.

Citation

Abdel-Aal, E-S.M., Miah, K., Young, J.C., and Rabalski, I. (2007). "Comparison of Four C18 Columns for the Liquid Chromatographic Determination of Deoxynivalenol in Naturally Contaminated Wheat.", Journal of AOAC International, 90(4), pp. 995-999.

Abstract

Three long and 1 short reversed-phase C18 columns were compared for separation of deoxynivalenol (DON) in extracts of naturally contaminated wheat samples using liquid chromatography with ultraviolet detection and liquid chromatography/mass spectrometry (LC/MS). Among the 3 long columns used, a Symmetry C18 column with an isocratic solvent mixture of water-acetonitrile-methanol (90 + 5 + 5, v/v/v) gave the best separation for DON without interferences from other compounds in the wheat extracts. The Symmetry short (75 mm) column was comparable with the long column (250 mm) in resolving DON but significantly reduced retention time (i.e., 5.8 versus 16.3 min). Increasing the column temperature from 25 to 45°C resulted in a further reduction in retention time. Identity of DON in the wheat extracts and standard solutions was confirmed by LC/MS in the positive ion mode, whereby DON appeared with an (M+1)+ ion at a mass-to-charge ratio of 297 plus fragment ions associated with loss of water and/or a 30 atomic mass unit (amu) CH₂O fragment. The Symmetry short column was also capable of separating a mixture of the Three long and 1 short reversed-phase C18 columns were compared for separation of deoxynivalenol (DON) in extracts of naturally contaminated wheat samples using liquid chromatography with ultraviolet detection and liquid chromatography/mass spectrometry (LC/MS). Among the 3 long columns used, a Symmetry C18 column with an isocratic solvent mixture of water-acetonitrile-methanol (90 + 5 + 5, v/v/v) gave the best separation for DON without interferences from other compounds in the wheat extracts. The Symmetry short (75 mm) column was comparable with the long column (250 mm) in resolving DON but significantly reduced retention time (i.e., 5.8 versus 16.3 min). Increasing the column temperature from 25 to 45°C resulted in a further reduction in retention time. Identity of DON in the wheat extracts and standard solutions was confirmed by LC/MS in the positive ion mode, whereby DON appeared with an (M+1)+ ion at a mass-to-charge ratio of 297 plus fragment ions associated with loss of water and/or a 30 atomic mass unit (amu) CH₂O fragment. The Symmetry short column was also capable of separating a mixture of the mycotoxins DON, 15-acetyl-DON, nivalenol, and zearalenone by use of a combination of an isocratic and gradient solvent system. The overall method showed high precision, exhibiting a relative standard deviation of 4.8%, limit of detection of 50 ng/g, and limit of quantitation of 165 ng/g. It was significantly correlated with enzyme-linked immunosorbent assay analysis, indicating its appropriateness for safety and quality assurance of wheat and related grains.

Publication date

2007-12-31

Author profiles