Types of oilseed and adipose tissue influence the composition and relationships of polyunsaturated fatty acid biohydrogenation products in steers fed a grass hay diet

Citation

Mapiye, C., Aalhus, J.L., Turner, T.D., Rolland, D.C., Basarab, J.A., Baron, V.S., McAllister, T.A., Block, H.C., Proctor, S.D., Dugan, M.E.R. (2014). Types of oilseed and adipose tissue influence the composition and relationships of polyunsaturated fatty acid biohydrogenation products in steers fed a grass hay diet. Lipids, [online] 49(3), 275-286. http://dx.doi.org/10.1007/s11745-013-3876-1

Abstract

The current study evaluated the composition and relationships of polyunsaturated fatty acid biohydrogenation products (PUFA-BHP) from the perirenal (PRF) and subcutaneous fat (SCF) of yearling steers fed a 70 % grass hay diet with concentrates containing either sunflower-seed (SS) or flaxseed (FS). Analysis of variance indicated several groups or families of structurally related FA, and individual FA within these were affected by a number of novel oilseed by fat depot interactions (P < 0.05). Feeding diets containing SS increased the proportions of non-conjugated 18:2 BHP (i.e., atypical dienes, AD) and conjugated linoleic acids (CLA) with the first double bond from carbon 7 to 9, trans-18:1 isomers with double bonds from carbon 6 to 12, and these PUFA-BHP had greater proportions in SCF compared to PRF (P < 0.05). Enrichment of conjugated linolenic acids, AD and CLA isomers with the first double bond in position 11 or 12, and t-18:1 isomers with double bonds from carbon 13 to 16 were achieved by feeding diets containing FS, with PRF having greater proportions than SCF (P < 0.05). Principal component analysis visually confirmed interaction effects on these groups/families of FA, and further confirmed or suggested a number of relationships between PUFA-BHP. Feeding SS or FS in a grass hay diet and exploiting adipose tissue differences, therefore, present unique opportunities to differentially enrich a number of PUFA-BHP which seem to have positive health potential in humans (i.e., t11-18:1, c9,t11-18:2 and c9,t11,c15-18:3). © 2014 Her Majesty the Queen in Right of Canada.