Review: The cellular mechanisms underlying mammary tissue plasticity during lactation in ruminants

Citation

Boutinaud, M., Herve, L., Quesnel, H., Lollivier, V., Finot, L., Dessauge, F., Chanat, E., Lacasse, P., Charton, C., Guinard-Flament, J. (2019). Review: The cellular mechanisms underlying mammary tissue plasticity during lactation in ruminants. Animal, [online] 13(S1), S52-S64. http://dx.doi.org/10.1017/S1751731119000624

Plain language summary

Lactation in dairy ruminants is challenged by perturbations that can either be induced on purpose, such as by modifying management practices, or occur involuntarily, when adverse environmental constraints arise. These challenges can have immediate effects on milk yield and could be followed or not by carryover effects. A series of studies have investigated the cellular mechanisms involved in the process of adaptation of the mammary tissue to these challenges. An improved understanding of these mechanisms may help predict irreversible effects on the mammary tissue.

Abstract

The mammary tissue is characterized by its capacity to adapt in response to a wide variety of changing conditions. This adaptation capacity is referred to as the plasticity of mammary tissue. In dairy ruminants, lactation is challenged by modifications that can either be induced on purpose, such as by modifying management practices, or occur involuntarily, when adverse environmental constraints arise. These modifications can elicit both immediate changes in milk yield and composition and carryover effects that persist after the end of the challenge. This review focuses on the current knowledge concerning the cellular mechanisms underlying mammary tissue plasticity. The main mechanisms contributing to this phenomenon are changes in the activity and number of mammary epithelial cells (MECs). Changes in the number of these cells result from variations in the rates of cell proliferation and death as well as changes in the rate MEC exfoliation. The number of MECs also depends on the number of resident adult mammary stem cells and their progenitors, which can regenerate the pools of the various mammary cells. Several challenges, including changes in milking frequency, changes in level of feed supply and hormonal manipulations, have been shown to modulate milk yield together with changes in mammary cell activity, turnover and exfoliation. Epigenetic changes may be an additional mechanism of adaptation. Indeed, changes in DNA methylation and reductions in milk yield have been observed during once-daily milking and during mastitis in dairy cows and may affect cell activity persistently. In contrast to what has been assumed for a long time, no carryover effect on milk yield were observed after feed supply challenges in dairy cows and modification of milking frequency in dairy goats, even though the number of mammary cells was affected. In addition, mammary tissue plasticity has been shown to be influenced by the stage of lactation, health status and genetic factors. In conclusion, the cellular mechanisms underlying mammary tissue plasticity are diverse, and the mammary tissue either does or does not show elastic properties (with no permanent deformation), in response to environmental changes.

Publication date

2019-07-01

Author profiles