Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay

Citation

Liu, W., Zhang, L., Yi, H., Shi, J., Xue, C., Li, H., Jiao, Y., Shigwedha, N., Du, M., Han, X. (2014). Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay. Journal of Microbiological Methods, [online] 100(1), 121-127. http://dx.doi.org/10.1016/j.mimet.2014.03.006

Abstract

In the present study, a YGNGV-motif-based assay was developed and applied. Given that there is an increasing demand for natural preservatives, we set out to obtain lactic acid bacteria (LAB) that produce bacteriocins against Gram-positive and Gram-negative bacteria. We here isolated 123 LAB strains from 5 types of traditional Chinese fermented food and screened them for the production of bacteriocins using the agar well diffusion assay (AWDA). Then, to acquire LAB producing class IIa bacteriocins, we used a YGNGV-motif-based assay that was based on 14 degenerate primers matching all class IIa bacteriocin-encoding genes currently deposited in NCBI. Eight of the LAB strains identified by AWDA could inhibit Gram-positive and Gram-negative bacteria; 5 of these were YGNGV-amplicon positive. Among these 5 isolates, amplicons from 2 strains (Y31 and Y33) matched class IIa bacteriocin genes. Strain Y31 demonstrated the highest inhibitory activity and the best match to a class IIa bacteriocin gene in NCBI, and was identified as Enterococcus faecium. The bacteriocin from Enterococcus avium Y33 was 100% identical to enterocin P. Both of these strains produced bacteriocins with strong antimicrobial activity against Listeria monocytogenes, Escherichia coli, and Bacillus subtilis, hence these bacteriocins hold promise as potential bio-preservatives in the food industry. These findings also indicated that the YGNGV-motif-based assay used in this study could identify novel class IIa bacteriocinogenic LAB, rapidly and specifically, saving time and labour by by-passing multiple separation and purification steps. © 2014 Elsevier B.V.

Publication date

2014-01-01

Author profiles