Piglet weight gain during the first two weeks of lactation influences the immune system development

Citation

Lessard, M., Blais, M., Beaudoin, F., Deschene, K., Verso, L.L., Bissonnette, N., Lauzon, K., Guay, F. (2018). Piglet weight gain during the first two weeks of lactation influences the immune system development. Veterinary Immunology and Immunopathology, [online] 206 25-34. http://dx.doi.org/10.1016/j.vetimm.2018.11.005

Plain language summary

In this study, fundamental biological differences between piglets born with a low weight and piglets born with normal weight were investigated. Low weight gain piglets showed differences in blood immune cell populations, activation of blood mononuclear cells, and expression of genes in the intestinal tissue. Therefore, impaired development of immune system in low weight piglets could decrease their immune defenses at weaning and later in life.

Abstract

The aim of this study was to investigate the effect of the piglet growth during the first week of life on ileal expression of genes and on development of the immune system. Eight litters adjusted to 12 piglets were used. Within each litter, the piglet that showed the lowest weight gain (LWG; n = 8) and the one that showed the highest weight gain (HWG; n = 8) in their first week of life were enrolled. Peripheral blood mononuclear cells (PBMC) were isolated on days 8 and 16 to characterize cellular population profiles and to assess ex-vivo secretion of interleukin-10 (IL-10), IL-6 and tumor necrosis factor-α (TNF-α). On day 16, piglets were euthanized and ileum samples were collected to extract RNA for microarray analysis and gene expression by qPCR. As expected, growth performance of LWG piglet was impaired compared to HWG piglets (P < 0.05). From day 8 to 16, the percentage of CD21+ B cells significantly increased in blood of heavier HWG piglets while the percentage remained constant in smaller LWG piglets (P weight x day = 0.01). For the CD4+CD8α− Th cells, a marked increase was observed in LWG piglets from 8 to 16 days of age (P = 0.002) whereas no significant change occurred in HWG piglets. Percentages of CD14+ monocytes and other MHC-II+ cells were respectively higher and lower on day 8 compared to day 16 for both groups of piglets (P < 0.01). On day 8, LPS-activated PBMC from LWG piglets produced less IL-6 compared to HWG piglets (P < 0.05). Microarray analysis of gene expression in piglets’ ileum tissue indicated that several genes involed in defense response and response to oxidative stress were modulated differently in LWG compared to HWG. Gene analysis by Q-PCR confirmed microarray results and revealed that IL-10, SOD1, NOS2, NOD2, TLR4, TLR9, CD40 and CD74 expressions were significantly decreased (P < 0.05) in LWG in comparison to HWG piglets, while MYD88 and NFkBiA showed a tendency to decrease (0.05 ≤ P < 0.07). These results suggest that birth weight and milk intake affect the growth performances and the development of immunity by modulating the expression of genes associated with immunity and oxidative stress in piglets’ intestinal tissue, and by affecting the leukocyte populations involved in innate and cell-mediated immunity in nursing piglets. Therefore, impaired development of immune system in LWG piglets might have an impact on their resistance to infections later in life.