Phosphorus Loss Mitigation in Leachate and Surface Runoff from Clay Loam Soil Using Four Lime-Based Materials

Citation

Eslamian, F., Qi, Z., Tate, M.J., Zhang, T., Prasher, S.O. (2018). Phosphorus Loss Mitigation in Leachate and Surface Runoff from Clay Loam Soil Using Four Lime-Based Materials. Water, Air, & Soil Pollution, [online] 229(3), http://dx.doi.org/10.1007/s11270-018-3750-0

Plain language summary

The increased eutrophication phenomenon in Quebec lakes calls for an urgent phosphorus-reducing strategy to meet the Quebec water quality standard of 0.03 mg L−1 for phosphorus (P). The objective of this research was to evaluate the application of four lime-based products in reducing P losses through subsurface leachate and surface runoff and to determine their optimum application. Two sets of experiments were conducted: laboratory leaching study and runoff study with a rainfall simulator, using a clay loam soil collected from the Pike river watershed. The former followed a flow method with a full factorial design in three replicates. Soil columns were amended with different application dosages of lime ranging from 0 to 2% by soil weight. The results showed that all four lime-based products could be promising amendments in reducing P losses in the leachate. According to statistical analysis of ANOVA, high calcium hydrated lime and lime kiln dust #2 were found to be the most effective with an optimum application dosage of 1% while reducing total dissolved phosphorus concentrations in leachate from 0.057 to 0.009 and 0.023 mg L−1, respectively. For the runoff study, a rainfall simulator with a maximum rainfall intensity of 2 cm h−1 was built. High calcium hydrated lime and lime kiln dust #2 were able to reduce total dissolved phosphorus to 0.034 and 0.037 mg L−1, respectively. However, particulate phosphorus was significantly increased at the studied application rate. The results from this study can offer a promising measure in reducing total dissolved phosphorus in groundwater while providing a solution to the existing environment issue of eutrophication

Abstract

The increased eutrophication phenomenon in Quebec lakes calls for an urgent phosphorus-reducing strategy to meet the Quebec water quality standard of 0.03 mg L−1 for phosphorus (P). The objective of this research was to evaluate the application of four lime-based products in reducing P losses through subsurface leachate and surface runoff and to determine their optimum application. Two sets of experiments were conducted: laboratory leaching study and runoff study with a rainfall simulator, using a clay loam soil collected from the Pike river watershed. The former followed a flow method with a full factorial design in three replicates. Soil columns were amended with different application dosages of lime ranging from 0 to 2% by soil weight. The results showed that all four lime-based products could be promising amendments in reducing P losses in the leachate. According to statistical analysis of ANOVA, high calcium hydrated lime and lime kiln dust #2 were found to be the most effective with an optimum application dosage of 1% while reducing total dissolved phosphorus concentrations in leachate from 0.057 to 0.009 and 0.023 mg L−1, respectively. For the runoff study, a rainfall simulator with a maximum rainfall intensity of 2 cm h−1 was built. High calcium hydrated lime and lime kiln dust #2 were able to reduce total dissolved phosphorus to 0.034 and 0.037 mg L−1, respectively. However, particulate phosphorus was significantly increased at the studied application rate. The results from this study can offer a promising measure in reducing total dissolved phosphorus in groundwater while providing a solution to the existing environment issue of eutrophication.

Publication date

2018-03-01

Author profiles