N<inf>2</inf>O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures

Citation

Rochette, P., Angers, D.A., Chantigny, M.H., Gagnon, B., Bertrand, N. (2008). N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures. Canadian Journal of Soil Science, [online] 88(2), 175-187. http://dx.doi.org/10.4141/CJSS06016

Abstract

Manure is known to increase soil N2O emissions by stimulating nitrification and denitrification processes. Our objective was to compare soil-surface N2O emissions following the application of liquid and solid dairy cattle manures to a loamy and a clay soil cropped to silage maize. Manures were applied in 2 consecutive years at rates equivalent to 150 kg total N ha-1 and compared with a control treatment receiving an equivalent rate of synthetic N. Soil-surface N2O fluxes, soil temperature, and soil water, nitrate and ammonium contents were monitored weekly in manured and control plots. From 60 to 90% of seasonal N2O emissions occurred during the first 40 d following manure and synthetic fertilizer applications, indicating that outside that period one or several factors limited N 2O emissions. The period of higher emissions following manure and fertilizer application corresponded with the period when soil mineral N contents were highest (up to 17 g NO3--N m-2) and waterfilled pore space (WFPS) was greater than 0.5 m3 m-3. The absence of significant N2O fluxes later in the growing season despite high WFPS levels indicated that the stimulating effect of organic and synthetic N additions on soil N2O production was relatively short-lived. Fertilization of silage maize with dairy cattle manure resulted in greater or equal N2O emissions than with synthetic N. This was observed despite lower overall soil mineral N contents in the manured plots, indicating that other factors affected by manure, possibly additional C substrates and enhanced soil respiration, resulted in greater denitrification and N2O production. Silage maize yields in the manured soils were lower than those receiving synthetic N, indicating that the N2O emissions per kilogram of harvested biomass were greater for manures than for synthetic N. Our results also suggest that the main source of N2O was nitrification in the loam and denitrification in the clay soil. There was no clear difference in N2O emissions between liquid and solid manures. The variable effects of liquid and solid manure addition on soil N2O emissions reported in the literature likely result from the variable composition of the manures themselves as well as from interactions with other factors such as soil environment and farming practices. A better characterization of the availability of manure C and N is required to assess the impact of manure application on soil N2O emissions under field conditions.

Publication date

2008-01-01