Influence of humidity and temperature on postharvest needle abscission in Balsam fir in the presence and absence of exogenous ethylene.

Citation

MacDonald, M.T., Rajasekaran, R., Dorais, M., and Pepin, S. (2012). "Influence of humidity and temperature on postharvest needle abscission in Balsam fir in the presence and absence of exogenous ethylene.", HortScience, 47(9), pp. 1328-1332.

Abstract

Ethylene accumulation increases after harvest and culminates in needle abscission in balsam fir [Abies balsamea (L.) Mill.]. We hypothesize that water deficit induces ethylene evolution, thus triggering abscission. The purpose of this research was to investigate the role of temperature and humidity on postharvest needle abscission in the presence and absence of exogenous ethylene and link vapor pressure deficit (VPD) to postharvest needle abscission in balsam fir. In the first experiment, branches were exposed to 30%, 60%, or 90% humidity while maintained at 19.7 °C (VPD of 1.59, 0.91, or 0.23 kPa, respectively); in the second experiment, branches were exposed to 5, 15, or 25 °C (VPD of 0.35, 0.68, or 1.26 kPa, respectively) while maintained at 60% relative humidity. Needle retention duration, average water use, xylem pressure potential relative water content, and ethylene evolution were response variables. Reducing water loss or xylem tension by changing temperature or humidity effectively delayed needle abscission, although the 90% humidity treatment had the most profound effects. In the absence of exogenous ethylene, branches placed in 90% humidity had a fivefold increase in needle retention, 67% decrease in average water use, and had a final xylem pressure potential of –0.09 MPa. There was a near perfect relationship between VPD and needle retention (R2 = 0.99). These findings suggest that increasing xylem tension or decreasing water status may trigger ethylene synthesis and needle abscission. In addition, these findings demonstrate an effective means of controlling postharvest needle abscission by modifying temperature and/or relative humidity.

Publication date

2012-12-31