Identification of top-ranked proteins within a directional protein interaction network using the PageRank algorithm: Applications in humans and plants.

Citation

Li, X.-Q., Xing, T., and Du, D. (2016). "Identification of top-ranked proteins within a directional protein interaction network using the PageRank algorithm: Applications in humans and plants.", Current Issues in Molecular Biology (CIMB), 20, pp. 13-28.

Abstract

Somatic mutation of signal transduction genes or key nodes of the cellular protein network can cause severe diseases in humans but can sometimes genetically improve plants, likely because growth is determinate in animals but indeterminate in plants. This article reviews protein networks; human protein ranking; the mitogen-activated protein kinase (MAPK) and insulin (phospho- inositide 3kinase [PI3K]/phosphatase and tensin homolog [PTEN]/protein kinase B [AKT]) signaling pathways; human diseases caused by somatic mutations to the PI3K/PTEN/ AKT pathway; use of the MAPK pathway in plant molecular breeding; and protein domain evolution. Casitas B-lineage lymphoma (CBL), PTEN, MAPK1 and PIK3CA are among PIK3CA the top-ranked proteins in directional rankings. Eight proteins (ACVR1, CDC42, RAC1, RAF1, RHOA, TGFBR1, TRAF2, and TRAF6) are ranked in the top 50 key players in both signal emission and signal reception and in interaction with many other proteins. Top-ranked proteins likely have major impacts on the network function. Such proteins are targets for drug discovery, because their mutations are implicated in various cancers and overgrowth syndromes. Appropriately managing food intake may help reduce the growth of tumors or malformation of tissues. The role of the protein kinase C/ fatty acid synthase pathway in fat deposition in PTEN/PI3K patients should be investigated. Both the MAPK and insulin signaling pathways exist in plants, and MAPK pathway engineering can improve plant tolerance to biotic and abiotic stresses such as salinity.

Publication date

2016-12-31

Author profiles