Genome characterization of Pyrenophora tritici-repentis isolates reveals high plasticity and independent chromosomal location of ToxA and ToxB

Citation

Aboukhaddour, R., Cloutier, S., Ballance, G.M., Lamari, L. (2009). Genome characterization of Pyrenophora tritici-repentis isolates reveals high plasticity and independent chromosomal location of ToxA and ToxB. Molecular Plant Pathology, [online] 10(2), 201-212. http://dx.doi.org/10.1111/j.1364-3703.2008.00520.x

Abstract

The fungus Pyrenophora tritici-repentis (Died.) causes tan spot, an important leaf disease of wheat worldwide. Isolates of this pathogen have been collected and characterized into eight races on the basis of their ability to produce three different host-selective toxins. The karyotype of 47 isolates was determined by pulsed field gel electrophoresis. The collection originated from different parts of the world and included genotypes from all races. A single isolate was characterized for each of races 3, 4 and 6, whereas fourteen, five, nine, five and eleven isolates were karyotyped for races 1, 2, 5, 7 and 8, respectively. The survey showed that the chromosome number of P. tritici-repentis was highly variable, with some isolates having as few as eight chromosomes, but others having 11 or more. Similarly, the genome size ranged from 25.5 to 48.0 Mb, and individual chromosome sizes ranged from 1.3 to more than 5.7 Mb. Considerable variation was observed in karyotype patterns among the P. tritici-repentis isolates tested. A total of 29 different karyotypes was identified among the 47 isolates. These chromosome level variations were as variable for isolates within a race as for isolates across races. Southern blot analysis of the 47 isolates with ToxA and ToxB probes revealed that the toxin genes were always located on different chromosomes. Furthermore, with six chromosome-specific single-copy probes, the ToxA-carrying chromosome was shown to be homologous among the Ptr ToxA-producing isolates, with a related chromosome in the non-ToxA-producing isolates, suggesting that the chromosome on which ToxA generally resides is of an essential nature. Interestingly, a molecular rearrangement involving a translocation of ToxA to a different chromosome was identified in one isolate. © 2008 Blackwell Publishing Ltd.