Dissolved organic carbon in runoff and tile-drain water under corn and forage fertilized with hog manure

Citation

Royer, I., Angers, D.A., Chantigny, M.H., Simard, R.R., and Cluis, D. (2007). "Dissolved Organic Carbon in Runoff and Tile-Drain Water under Corn and Forage Fertilized with Hog Manure.", Journal of Environmental Quality, 36(3), pp. 855-863. doi : 10.2134/jeq2006.0355

Abstract

Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L-1) was higher than in tile-drain water (6.5 mg DOC L -1). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L-1) than under corn (5.4 mg DOC L-1) even though the application rates of LHM were higher in corn plots. We suggest that preferential low facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface rnnoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn. © ASA, CSSA, SSSA.

Publication date

2007-05-01