Brassica carinata - A new molecular farming platform for delivering bio-industrial oil feedstocks: Case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds

Citation

Taylor, D.C., Falk, K.C., Palmer, C.D., Hammerlindl, J., Babic, V., Mietkiewska, E., Jadhav, A., Marillia, E.-F., Francis, T., Hoffman, T., Giblin, E.M., Katavic, V., and Keller, W.A. (2010). "Brassica carinata - A new molecular farming platform for delivering bio-industrial oil feedstocks: Case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds.", Biofuels, Bioproducts and Biorefining, 4(5), pp. 538-561. doi : 10.1002/bbb.231

Abstract

Crop development and species diversity are important aspects of the emerging global bioeconomy, as is maximizing crop value through total crop utilization. We advocate development of Brassica carinata as a biorefinery and bioindustrial oils platform using traditional and molecular breeding techniques and tools. We review genetic studies and breeding efforts to develop elite B. carinata germplasm, work involving development of transformation and regeneration protocols, target gene isolation, and transgene expression. Genetic modification strategies using a B. carinata breeding line as a delivery platform for very long-chain fatty acid-enhanced/modified oils are presented as case studies. The target oil products are erucic acid (22:1 Δ13), docosadienoic acid (22:2 Δ5, Δ13) and nervonic acid (24:1 Δ15); in addition transgenic efforts to enhance B. carinata seed oil content are discussed. The overall advantages and current limitations to utilizing this crop are delineated. Other anticipated biobased products from a B. carinata platform may include, but are not limited to, the production of biolubricants, biofuels and biopolymers from the oil, biopesticides, antioxidants, as well as plant gums, and vegetable protein-based bioplastics and novel food and feed products. In summation, this collaborative B. carinata breeding/germplasm development/value-added molecular modification effort will not only contribute to the development of renewable feedstocks for the emerging Canadian bioeconomy (biorefinery/bioproducts), but also promises to generate positive economic and environmental benefits. Published in 2010 by John Wiley & Sons, Ltd.

Publication date

2010-09-01