The Biological Impact of the Hypervariable N-Terminal Region of Potyviral Genomes

Citation

Cui, H., Wang, A. (2019). The Biological Impact of the Hypervariable N-Terminal Region of Potyviral Genomes. Annual Review of Virology, [online] 6 255-274. http://dx.doi.org/10.1146/annurev-virology-092818-015843

Plain language summary

Potyviruses represent the larget group of known plant RNA viruses that include many agriculturally important viruses in the world. This review article summarizes current knowledge about the conserved and divergent features of potyvirid genomes and biological relevance and discusses future research directions.

Abstract

Potyviridae is the largest family of plant-infecting RNA viruses, encompassing over 30% of known plant viruses. The family is closely related to animal picornaviruses such as enteroviruses and belongs to the picorna-like supergroup. Like all other picorna-like viruses, potyvirids employ polyprotein processing as a gene expression strategy and have single-stranded, positive-sense RNA genomes, most of which are monopartite with a long open reading frame. The potyvirid polyproteins are highly conserved in the central and carboxy-terminal regions. In contrast, the N-terminal region is hypervariable and contains position-specific mutations resulting from transcriptional slippage during viral replication, leading to translational frameshift to produce additional viral proteins essential for viral infection. Some potyvirids even lack one of the N-terminal proteins P1 or helper component-protease and have a genus-specific or species-specific protein instead. This review summarizes current knowledge about the conserved and divergent features of potyvirid genomes and biological relevance and discusses future research directions.

Publication date

2019-09-29

Author profiles