14-3-3 proteins regulate the intracellular localization of the transcriptional activator GmMYB176 and affect isoflavonoid synthesis in soybean

Citation

Li, X., Chen, L., Dhaubhadel, S. (2012). 14-3-3 proteins regulate the intracellular localization of the transcriptional activator GmMYB176 and affect isoflavonoid synthesis in soybean. Plant Journal, [online] 71(2), 239-250. http://dx.doi.org/10.1111/j.1365-313X.2012.04986.x

Abstract

Isoflavonoids are legume-specific natural plant compounds that play important functions in nitrogen fixation as well as biotic and abiotic stress responses. Many clinical studies have suggested a role for isoflavonoids in human health and nutrition. We have recently identified an R1 MYB transcription factor GmMYB176 that regulates CHS8 gene expression and isoflavonoid biosynthesis. Here we demonstrate that binding of 14-3-3 proteins to GmMYB176 modulates this function. GmMYB176 interacts with all 16 14-3-3 proteins (SGF14s) in soybean (Glycine max) with varying activity. The detailed analysis of 14-3-3-binding sites within GmMYB176 identified a critical motif (D2) where Ser29 is potentially phosphorylated. Deletion of the D2 motif from GmMYB176 or substitution of Ser29 with an alanine abolished binding with SGF14 proteins, which altered the subcellular localization of GmMYB176. Overexpression of SGF14l in soybean hairy roots did not affect the transcript level of GmMYB176 but it reduced the expression levels of key isoflavonoid genes and isoflavonoid accumulation in soybean hairy root. Our results suggest that SGF14-GmMYB176 interaction regulates the intracellular localization of GmMYB176, thereby affecting isoflavonoid biosynthesis in soybean. © 2012 Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri Food Canada The Plant Journal © 2012 Blackwell Publishing Ltd.

Publication date

2012-07-01

Author profiles