Roger Y. Tam, PhD

Research Scientist

I am a Research Scientist and Principle Investigator for the Glycobiology Laboratory in the Regulatory Research Division at the Biologics and Genetic Therapies Directorate of Health Canada. Our laboratory is interested in assessing the important roles that carbohydrates play in various biologic therapeutics (e.g. vaccines, monoclonal antibodies, cell-based therapies) to ensure product safety and efficacy for the Canadian public.

Current research and/or projects

Many biological therapeutics (e.g. vaccines, monoclonal antibodies, cell-based therapies) contain carbohydrates (or glycans) that are vital to their biological function and stability. However, glycan structures found in many biotherapeutics are heterogeneous, complex, and sensitive to production/manufacturing parameters. To ensure the safety and efficacy of these biological products for the Canadian public, our laboratory is interested in developing and applying methods to (i) quantitate carbohydrate content / composition, and (ii) study how specific glycan structures influence the safety and potency in various biotherapeutics.

Research and/or project statements

- Glycan Structure-Function studies of biological therapeutics.

- Developing in vitro biological assays that better mimic the in vivo microenvironment.

Professional activities / interests

- Supervisor for undergraduate students (Honour's, Co-op) - University of Ottawa

Education and awards

Postdoctoral Fellow, Ottawa Hospital Research Institute, Ottawa, Canada

  Disease modeling and high throughput drug screening of invasive lung diseases using induced pluripotent stem cells cultured in novel 3D biomaterials     

Postdoctoral Fellow, University of Toronto, Toronto, Canada

  (I) Biomimetic 3D scaffolds for stem cell delivery into the injured spinal cord for tissue regeneration.                   

  (II) 3D biomaterials for in vitro disease modeling using human induced pluripotent stem cells.

Ph.D.  (Organic Chemistry), Department of Chemistry, University of Ottawa, Ottawa, Canada

    Dissertation : Studies into the structural features of C-linked antifreeze glycoprotein analogues responsible for ice-recrystallization inhibition activity.



Key publications

Selected Publications (out of 30):

17. Baker, A. E. G.; Bahlmann, L. C.; Tam, R. Y.; Liu, J. C.; Ganesh, A. N.; Mitrousis, N.; Marcellus, R.; Spears, M.; Bartlett, J. M. S.; Cescon, D. W.; Bader, G. D.; Shoichet, M. S. “Benchmarking to the Gold Standard: Hyaluronan-oxime Hydrogels Recapitulate Xenograft Models for In Vitro Breast Cancer Spheroid Culture.” Advanced Materials. 2019, adma.201901166R2. Accepted.

16. Tam, R.Y.; Yockell-Lelièvre, J.; Smith, L.J.; Julian, L.M.; Baker, A.E.G.; Choey, C.; Hasim, M.S.; Dimitroulakos, J.; Stanford, W.L.; Shoichet, M.S. “Rationally Designed 3D Hydrogels Model Invasive Lung Diseases Enabling High‐Content Drug Screening” Advanced Materials. 2019, 31, 1806214

15.  Fisher, S.A.; Tam, R.Y.; Fokina, A.; Mahmoodi, M.M.; Distefano, M.D.; Shoichet, M.S. “Immobilized EGF Chemical Gradients Differentially Impact Breast Cancer Cell Invasion and Drug Response in Defined 3D Hydrogels.” Biomaterials 2018, 178, 751-766.

14. Baker, A.E.*; Tam, R.Y.*; Shoichet, M.S. “Independently tuning the biochemical and mechanical properties of 3D hyaluronan-based hydrogels with oxime and Diels-Alder chemistry to culture breast cancer spheroids.” Biomacromolecules 2017, 18, 4373-4384. *Co-first authors.

13. Tam, R.Y.; Smith, L.J.; Shoichet, M.S. “Engineering Cellular Microenvironments with Photo- and Enzymatically- Responsive Hydrogels: Towards Biomimetic 3D Cell Culture Models” Accounts of Chemical Research 2017, 50, 703-13.

12. Tam, R.Y.; Fisher, S.A.; Baker, A.E.G.; Shoichet, M.S. “Transparent Porous Polysaccharide Cryogels Provide Biochemically Defined, Biomimetic Matricies for Tunable 3D Cell Culture.” Chemistry of Materials 2016, 28, 3762-70.

11. Führmann, T.; Tam, R.Y.; Ballarin,B; Coles, B.; Donaghue, I.E.; van der Kooy, D.; Nagy, A.; Tator, C.H.; Shoichet, M.S. “Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates long term teratoma formation after spinal cord injury by inducing differentiation.” Biomaterials. 2016, 83, 23-36.

10. Mitrousis, N.; Tam, R.Y.; Baker, A.E.G.; van der Kooy, D.; Shoichet, M.S. “Hyaluronic Acid-Based Hydrogels Enable Rod Photoreceptor Survival and Maturation in vitro Through Activation of the mTOR Pathway.” Advanced Functional Materials 2016, 26, 1975-85.

9.  Witty, A.D.; Mihic, A.; Tam, R.Y.; Fisher, S.A.; Shoichet, M.S.; Li, R.-K.; Kattman, S.J.; Keller, G.M. “The generation of the epicardial lineage from human pluripotent stem cells.” Nature Biotechnology 2014, 32, 1226–35

8.  Tam, R.Y.; Owen, S.; Shoichet, M.S. “ECM-Inspired Chemical Cues: Biomimetic Molecules and Techniques of Immobilization.” In Bio-inspired Materials for Biomedical Engineering. (Brennan, A.B.; Kirschner, C.; Eds.) John Wiley & Sons, Inc. 2014, pp 400.

7.  Tam, R.Y.; Fuehrmann, T.; Mitrousis, N.; Shoichet, M.S. “Regenerative Therapies for Central Nervous System Diseases: A Biomaterials Approach.” Neuropsychopharmacology 2014, 39, 169-188.

6.  Mothe, A. J.; Tam, R.Y.; Zahir, T.; Tator, C.H.; Shoichet, M.S. “Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel.” Biomaterials 2013, 34, 3775-3783

5.  Tam, R.Y.; Cooke, M.J.; Shoichet, M.S.  “Covalently Modified Hydrogel Blend of Hyaluronan-Methyl Cellulose with Peptides and Growth Factors Influences Neural Stem/Progenitor Cell Fate.” Journal of Materials Chemistry 2012, 22, 19402-19411. 

4.  Chaytor, J.L.; Tokarew, J.M.; Wu, L.; Leclere, M.; Tam, R.Y.; Capiciotti, C.J.; Guolla, L.; von Moos, E.; Findlay, C.S.; Allan, D.S.; Ben, R.N. “Inhibiting Ice Recrystallization and Optimization of Cell Viability After Cryopreservation.” Glycobiology  2012, 22, 123-133.

3.  Tam, R.Y.; Rowley, C.N.; Petrov, I.; Zhang, T.; Afagh, N.A.; Woo, T.; Ben, R.N. “Solution Conformation of C-Linked Antifreeze Glycoprotein Analogues and Modulation of Ice Recrystallization.” Journal of American Chemical Society 2009, 131, 15745-15753.

2. Tam, R.Y.; Ferreira, S.S.; Czechura, P.; Chaytor, J.L.; Ben, R.N. “Hydration Index – A Better Parameter for Explaining Small Molecule Hydration in Inhibition of Ice Recrystallization.” Journal of American Chemical Society 2008, 130, 17494-17501.

1.  Czechura, P.; Tam, R.Y.; Dimitrijevic, E.; Murphy, A.; Ben, R.N.  “The Importance of Hydration for Inhibiting Ice Recrystallization with Novel C-Linked Antifreeze Glycoproteins.”  Journal of the American Chemical Society 2008, 130, 2928-2929.